

Sustainable Aviation Fuel

Global Opportunities in an Indian Context

February 15, 2020

ICF - A Growing, Global Company Since 1969

Global professional, technology and marketing services firm

Headquartered in Washington, D.C. with:

including; New Delhi, Toronto, Singapore, Manila, Beijing, London, and Brussels

\$1.45B In annual revenue

Professionals

More than

SAF in an Indian Context

- Sustainable Aviation Fuel (SAF) is of increasing interest to Governments, Investors, and Owners
- New technologies use biomass and waste resources available in India
- Recent programs to monetize environmental benefits have enabled sustainable course for SAF
 - Social Energy Security and Jobs (particularly rural)
 - Fiscal Monetizing environmental attributes enables fiscal performance
 - Environmental GHG and pollutant reductions in the hardest transportation sector to decarbonize

		123
	SAF	
	stainab	oility
	a	5
<u>a</u>	SC	10
0	Γ	3
	•	en
		0

Technical Characteristics of Jet Fuel

- Kerosene based, C6 to C16 Carbon Range (Most in C12-C14)
 - Alkanes (paraffin's) and Cycloalkanes Stable, clean burning portion of jet most of the power comes from alkane combustion
 - Aromatics Easy burning components (8%-10% of jet) including BTX, necessary for seal and rubber component performance. Responsible for exhaust smoke and fuel odor
 - Olefins Unstable double bonds, fuel degradation
- High in sulfur, usually in 400-800ppm range, 3,000 ppm max
 - On road Ultra Low Sulfur Diesel (ULSD) is 15 pm max
 - Creates SOx upon combustion
- Sold as Jet A, -40°C (NA) and Jet A-1 -47°C Europe and Asia

Sustainable Aviation Fuel

- ASTM 1655 Standard Specification for Aviation Fuels / IS 1571: 2001 (Seventh Revision) India
 - Renewable jet fuels have been added to specification via Annexes
- Made by assembling carbons in one of three general pathways (near term)
 - Fisher Tropsch Synthetic Paraffinic Kerosene (FT SPK, Annex A1, A4) C1 (Trash Feedstock)
 - Hydrotreated Renewable Jet (HRJ, Annex A2) C16-C18 (Used Cooking Oil & Tallow Feedstock)
 - Alcohol to Jet (ATJ, Annex A3, Annex A5) C2, C4 (Ethanol and Butanol Feedstock)
- SAF
 - High in C12-C14 alkanes, very low aromatics
 - Di minimis sulfur content
 - Is typically blended 50/50 for aromatics
 - Higher energy, lighter weight than conventional jet

SAF Social Sustainability - Jobs

energy, concentrated solar power, heat

pumps (ground-based), municipal and

industrial waste, and ocean energy.

FIGURE 1: GLOBAL RENEWABLE ENERGY EMPLOYMENT BY TECHNOLOGY, 2012-2018

Source: IRENA jobs database.

Note: Except for hydropower where a revised methodology led to revisions of job estimates, numbers shown in this figure reflect those reported in past editions of the Annual Review.

https://www.irena.org/-

/media/Files/IRENA/Agency/Publication/2019/Jun/IRENA_RE_Jobs_2019-report.pdf

FIGURE 1. RENEWABLE ENERGY CAPACITY INVESTMENT OVER THE DECADE, 2010-2019, SBN

Includes an estimate for 2019, based partly on provisional first-half data. Source: UN Environment, Frankfurt School-UNEP Centre, BloombergNEF

https://wedocs.unep.org/bitstream/handle/ 20.500.11822/29752/GTR2019.pdf

Per the UN and IRENA

- 5.2% of \$2.6 trillion global RE investment has been in bioenergy
- 36% of all RE jobs are in bioenergy!

SAF Social Sustainability – Energy Security

Spitfires in the RAF were slower than Luftwaffe's Messerschmitt's on 87 octane at outset of war, Allies developed 100 octane fuel and turbochargers which gave the spitfires a 30 mph advantage

- Domestic production of SAF makes India more secure
- Preliminary Work at USAF and USN found SAF to be better performing fuel;
 - SAF is high in alkanes, with a higher energy density and lower weight than conventional jet.
 - Between 4% 7% increase in energy, increased the fully loaded capacity of an F-18 Hornet by 1,000kg or increased range when not fuel tank limited
 - Combustion temperatures decreased by up to 135°F with SAF
 - "At the temperatures that military jet engine perform at, an additional 25 degrees in temperature can shorten the life of the engine by half" – USAF Consultant

SAF Fiscal Sustainability – Value Stack

Value Stack for SAF in GHG Regulated Market (California)

- New GHG valuation programs add to the value stack
- California LCFS, Oregon Clean Fuel Program, British Columbia LCFS
- Proposed or in Study; New York, New England, Colorado, US Midwest Consortium, Canada - National Program
- Other GHG programs; CORSIA, RED II
- Total Value = \$5.36 / gallon = INR 100 / liter
- \$4.36 / gallon (INR 81 / liter) available to Indian Producers shipping to California

SAF Fiscal Sustainability – GHG Regulated Market (California)

- LCFS credits stack on top of RIN
 and physical fuel value
- SAF February 2020
 - LCFS = \$1.27 (\$208 @ CI of 39)
 - RIN = \$0.85 (D4 \$0.50)
 - CAR = \$0.15
 - <u>CA Jet-A = \$2.09 per gal</u>
 - Total = \$4.36 / gal w/o producer credit (\$1)
- Waste to Fuel Producers can even
 more credit value
 - Negative CI (methane capture) projects

CAR = Cap-At-The-Rack is a premium paid for conventional diesel under the California Cap and Trade program, LCFS and RIN value is NOT passed through to rack under this arrangement

Potential LCFS Credit Value (2020)

Fuel	Assumed CI Value (g/MJ)	LCFS Credit Price (\$/MT CO ₂ e)				
		50	100	150	200	Units
Corn Ethanol	71	0.07	0.14	0.22	0.29	\$/gal
Cellulosic Ethanol	30	0.24	0.48	0.72	0.96	\$/gal
Biodiesel	30	0.37	0.74	1.11	1.48	\$/gal
Renewable Diesel	30	0.38	0.76	1.14	1.52	\$/gal
Hydrogen	88	0.80	1.60	2.40	3.20	\$/kg
Landfill NG	40	2.10	4.20	6.30	8.40	\$/mmBTU
Dairy NG	-276	18.92	37.84	56.76	75.67	\$/mmBTU
Electricity	105	0.04	0.07	0.11	0.14	\$/kW-hr

Source: California Air Resources Board

LCFS imposes \$0.15 of cost per gallon of fuel sold in California (\$3.47/gallon retail cost)

SAF Environmental Sustainability – GHG's

2017 Volume-weighted Average Carbon Intensity by Fuel Type

- Each individual production facility assigned its own Carbon Intensity based on feedstock, process, and transport to market
- SAF has lower GHG emission rate than Jet
 - Jet = 89 gCO2e/MJ
 - SAF (HRJ) = 39 gCO2e/MJ

SAF from this HRJ reference facility has 56% lower GHG's than Jet A1

Source: California Air Resources Board

SAF Environmental Sustainability – Soot & SO_x

- NASA Alternative-Fuel Effects on Contrails and Cruise Emissions (ACCESS) Study
 - 50% SAF (HRJ) Blend Reduced soot particle number and mass emissions by 50% on ground and cruise

Air

- Fuel components to pollutants
 - Aromatics make soot
 - Sulfur makes SO_x
- SAF 50% blend reduces sulfur and aromatics in fuel by half

Jet A = 1 kg

$$H_2O = 1.24 \text{ kg}$$

Soot = 0.01 to 0.2g
 $CO_2 = 3.15 \text{ kg}$
 $UHC = 0.1 \text{ to } 0.7g$
 $NO_x = 6 \text{ to } 20 \text{ g}$

Why India?

- To be successful with SAF, Countries need
 - Biomass Alcohols and oils near term, cellulosic in future
 - Labor Farmers, Operators, Logistics, Waste Collection
 - Waste Used cooking oils, fats & tallows, dry trash
 - Refining / Biofuel Infrastructure to build on World class Indian companies
 - Supportive Policy National Policy on Biofuels 2018
- India has most all the elements in place....

Using 10 pc biofuel for first time, IAF"s AN-32 aircraft conducts flight ops at Leh January 31, 2020

In Conclusion...

- New policies to monetize GHG reductions are making SAF truly sustainable (Social, Fiscal, and Environmental)
- SAF technologies are available from Global and Indian companies
- India has all the elements necessary to produce SAF for global consumption, and domestic consumption with GHG policy updates
- Market studies, technical diligence, feasibility studies, whatever your need; ICF is here to help!

Lets Get Started...

Mike McCurdy Managing Director – Fuels and Power <u>mike.mccurdy@icf.com</u> +1.303.728.6332 (skype)

Gurpreet Chugh Managing Director – India <u>Gurpreet.Chugh@icf.com</u> +91.11.43543000 (skype)

Lewis Burroughs Senior Aviation Consultant Lewis.Burroughs@icf.com +44 20 3096 4966 (skype)

