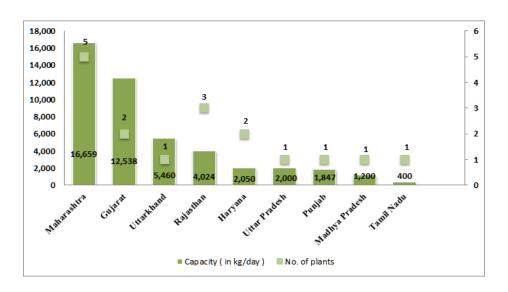


Aftertreatment Challenges for CNG as an Automotive and Engine Fuel

Presented at the World Future Fuel Summit and Expo, 16th February 2020

Sudipto Basu

- We are a non-profit Association, representing thirteen manufacturers of exhaust aftertreatment for mobile & stationary sources. We are comitted to collaboratively lead India towards Cleaner Air.
- We work with the Industry, Government Regulators, Oil Companies and the Public at large, to be a credible source of knowledge on emission control and we strive to increase awareness in emissions management by providing relevant technical solutions for this.
- We achieve this through assimilation of technologies, providing and disseminating knowledge enabling emission control. We hold Seminars and Conferences, pertaining to reducing pollution from automotive and powertrain exhaust sources


Prelude

- CNG as a fuel for automotive and stationary engine use is expected to grow in future.
- There are various reasons for this and not just the depletion of the fossil-fuel pool but also the abundance of CNG and the possibility for generating Bio-CNG from bio-waste.

Presently, there are seventeen Bio-CNG plants operational in India, with a combined capacity of 46,178 kg per day

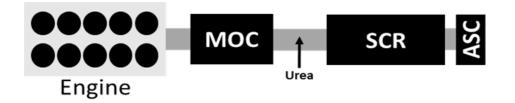
Source Renewabkes Watck -https://bit.ly/2P4Koc4

- The perception of CNG as cleaner than other fossil and bio-fuels works in its favour.
- However as norms for emissions remain fuel neutral and become more stringent, CNG too needs exhaust aftertreatment tailored to specific requirements.

Major Green House GAS EMISSION & Tough Species to Oxidise

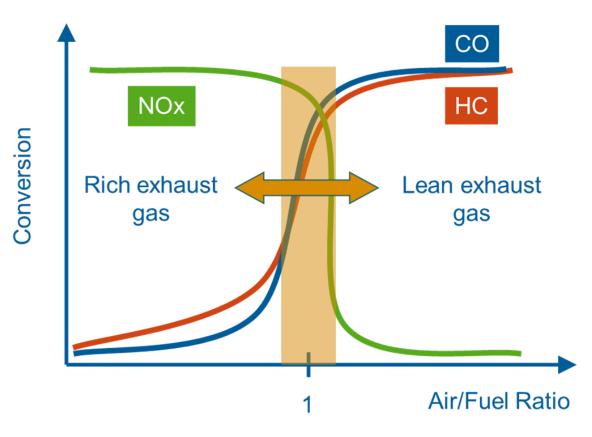
	_
Concentration (vol. %)	
90.0 ± 1.0	
4.0 ± 0.5	
2.0 ± 0.3	
0.2 max	
0.5 max	
3.5 ± 0.5	
0.1 max	
0.1 may	
0.1 max	
16 ppm max	
	90.0 ± 1.0 4.0 ± 0.5 2.0 ± 0.3 0.2 max 0.5 max 3.5 ± 0.5 0.1 max

Major Poisoning element for Catalyst



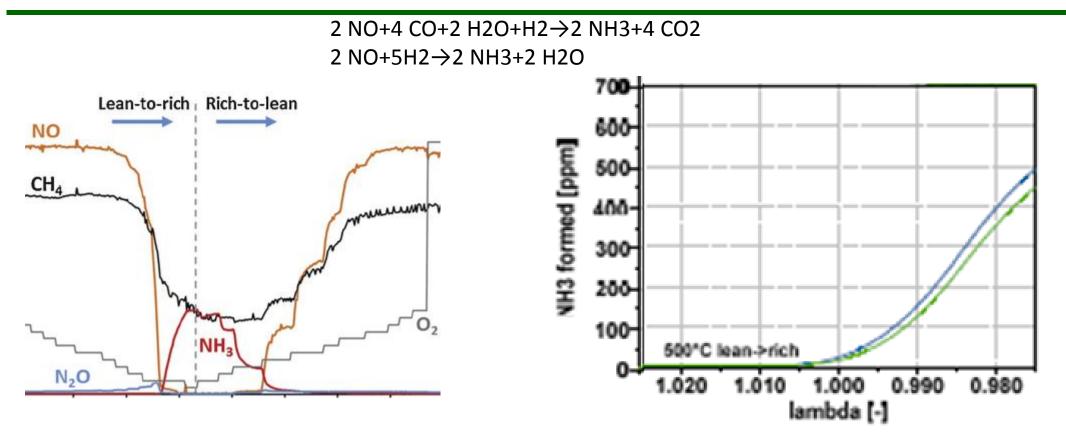
CNG Engine After Treatment System (ATS)

Engine


Emission conversion of Stoichiometric CNG engine can be carried out with a three-way catalyst (TWC)

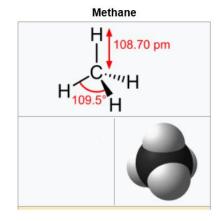
Lean-burn conditions in CNG combustion requires more complex ATS to clean exhaust gases. Methane oxidation catalyst (MOC) converts CO and CH4 emissions and provides small quantities of NO2 for a selective catalytic reduction (SCR). The SCR converts NOx emissions with NH3 to N2 and H2O. An ammonia slip catalyst (ASC) prevents NH3 emission

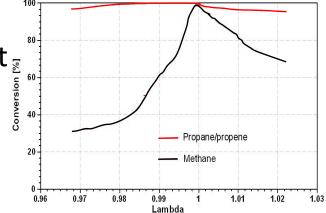
CNG Operation & Challenges



Major Challenges:-

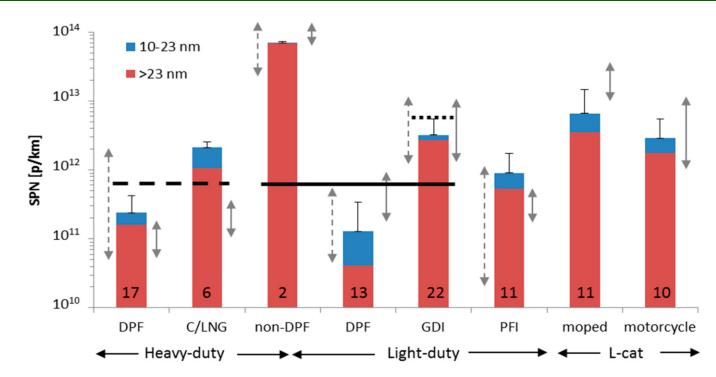
- For BEST Conversion of all Species CNG must operate with Narrow band of Lambda window
- CH4 (GHG) is tough to oxidise if this window is wide
- $\succ CH_4 + 2O_2 = CO_2 + 2H_2O$ —Needs a Lot of Energy
- NOx control is more efficient with rich side and optimum lambda
- NH3 formation (For HD-CNG) is challenging during Lean-rich cycle
- OSC stability & Response

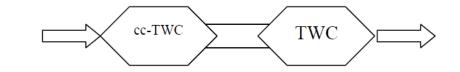

NH3-Challenges


- \rightarrow high Rh amount needed
- $\rightarrow\,$ calibration is crucial, good fit between calibration and catalyst needed

Pic. Ref: Applied Catalysis A, General 552 (2018) 30-37

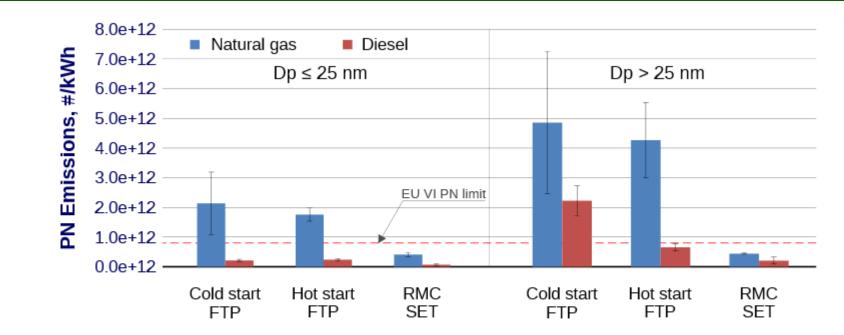
- Lower exhaust gas temperature (compared to gasoline)
 → lower light-off necessary
- Trend from natural aspirated to turbo charged engines
 → even lower exhaust temperature
- $\lambda = 1 lambda$ window narrower due more complex methane molecule structure
 - \rightarrow high Pd amount needed
 - \rightarrow calibration is crucial, good fit between calibration and catalyst needed

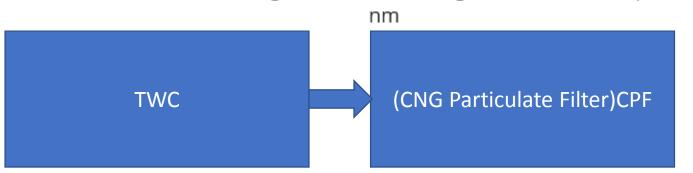



PN Challange

Overview of emission levels of different current vehicle categories. Dashed arrows on the left of the bars show reported range of an older SPN review [35]. Arrows on right shows suggested emission factors based on [68]. Error bars show one standard deviation (only positive side) for the number of vehicles shown in each bar. Horizontal lines give the European regulated SPN limits for SPN >23 nm. Note that for the GDIs of this figure the limit was 6×10^{12} p/km (dotted line). The dashed line shows a limit of 6×10^{11} p/km. However, the SPN limit applies only to heavy-duty engines (not vehicles) and is expressed in p/kWh. All tests at temperatures around 23 °C.

Ref: Int. J. Environ. Res. Public Health 2018, 15, 304; doi:10.3390/ijerph15020304




(CNG Particulate Filter)CPF

After Treatment Layout-For PN Reduction

3. Solid PN emissions from a CNG engine and a diesel engine with a DPF for particles below and above 25

Emission Controls Manufacturers Association

Snap Ref: Diesel Net

Our Member Companies

Emission Controls Manufacturers Association

13